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Abstract

We present the second ever evaluated Arabic dialect-to-dialect machine translation effort,
and the first to leverage external resources beyond a small parallel corpus. The subject has
not previously received serious attention due to lack of naturally occurring parallel data; yet its
importance is evidenced by dialectal Arabic’s wide usage and breadth of inter-dialect variation,
comparable to that of Romance languages. Our results suggest that modeling morphology and
syntax significantly improves dialect-to-dialect translation, though optimizing such data-sparse
models requires consideration of the linguistic differences between dialects and the nature of
available data and resources. On a single-reference blind test set where untranslated input scores
6.5 BLEU and a model trained only on parallel data reaches 14.6, pivot techniques and morpho-
syntactic modeling significantly improve performance to 17.5.

1 Introduction

Arabic is widely spoken and highly diglossic, with Modern Standard Arabic (MSA) represent-
ing the high register shared across the Arab World in educated circles. In contrast, the many
spoken dialectal Arabic varieties (DA) are somewhat if not entirely mutually unintelligible, e.g.,
Moroccan and Kuwaiti. Chiang et al. (2006) compare the linguistic variation among Arabic di-
alects to that among Romance languages, indicating the need for machine translation (MT)



between these dialects. However, while much MT research has been devoted to translating
between Romance languages (Corbi Bellot et al., 2005; Armentano-Oller et al., 2006; Koehn
et al., 2009), we are aware of only one work on Arabic DA-to-DA MT (Meftouh et al., 2015).
It deals mainly with Maghrebi dialects and utilizes only a small parallel corpus.' This work fo-
cuses on the Egyptian and Levantine dialects, leveraging various available resources such as a
morphological analyzer and additional monolingual and multilingual data.> Compared to other
dialects, Egyptian and Levantine’s wider range of available data/resources allows us to evaluate
more MT approaches using different combinations of these data/resources. Thus, in future work
on DA pairs which may not have the same data/resources, we can tailor MT systems based on
this paper’s findings.

The main challenge in developing DA-to-DA MT systems is the lack of data. While many
Romance languages are official languages with written standards, naturally occurring in parallel
corpora like the European Parliament (Koehn, 2005), DA has no official status and was rarely
written until the advent of social media.> The recent release of the first parallel multi-dialectal
corpora (Bouamor et al., 2014; Meftouh et al., 2015) has enabled seminal, albeit low-resource
MT experiments. We present some shortcomings of these corpora and introduce an in-house,
under-development corpus. Then we explore different means of leveraging external resources,
e.g., Egyptian-to-English and Levantine-to-English data and an Egyptian tokenizer and morpho-
logical analyzer (Habash et al., 2012b; Maamouri et al., 2014; Pasha et al., 2014). We conduct
experiments in a range of data-sparse settings and show the effect of morpho-syntactic features
on the DA-to-DA MT performance. Our approach can be extended to other DA pairs and other
closely related languages and dialects (Tyers et al., 2017).

2 Related Work

An increasing amount of research has been conducted on dialectal Arabic NLP; however, most
dialectal MT efforts translate from DA to MSA or English. The only other DA-to-DA work we
are aware of focuses on manipulating language model smoothing parameters to optimize data
sparse MT performance (Meftouh et al., 2015).

2.1 Dialectal Arabic Machine Translation

While only Meftouh et al. (2015) have evaluated DA-to-DA MT, many others have addressed
MT between DA and other languages. Zbib et al. (2012) attempted to translate from Egyptian
and Levantine to English and found that pivoting through better resourced MSA was not useful
due to register and domain differences. MSA, the higher register, is rarely used to discuss the
day-to-day matters frequently treated with DA, causing a domain mismatch. However, several
approaches have since presented alternative results (Sawaf, 2010; Salloum and Habash, 2011,
2012; Sajjad et al., 2013; Durrani et al., 2014). These use rule-based or hybrid methods to
identify mappings from DA to MSA before translating to a target language (usually English).
Additionally, Tachicart and Bouzoubaa (2014) report results on adapting an approach designed
for MSA to Moroccan translation to translate in the inverse direction (Moroccan to MSA).

2.2 Dialectal Arabic Data

Several newly developed corpora have facilitated the recent surge in dialectal NLP work.

Maghrebi dialects are those spoken in Morocco, Algeria, Tunisia and Libya.

2Levantine covers the dialects spoken in Lebanon, Syria, Palestine and Jordan.

3Recently, two parallel Arabic translations were created for 12,000 sentences from the European Parliamentary
proceedings, but both are in MSA (Habash et al., 2017).



The DARPA BOLT (Broad Operational Language Translation) project sponsored the cre-
ation of a large number of resources,* including a sizeable data set of DA sentences paired
with their English translations. This data set consists of 2.2 million words of Egyptian and 1.5
million words of Levantine which were harvested from SMS messages and online sources like
weblogs before being translated.

As for monolingual corpora, Zaidan and Callison-Burch (2011)’s Arabic Online Commen-
tary (AOC) corpus contains 52 million words of mixed MSA and DA from news articles and
readers’ comments. Cotterell and Callison-Burch (2014) add modest amounts of Twitter data
to this corpus, though we find the domain difference harmful for language modeling and drop
it in our experiments. Khalifa et al. (2016)’s GUMAR corpus contains over 100 million words
of Gulf Arabic and a smattering of other dialects, all taken from internet novels, a genre of long
conversational novels shared anonymously on online forums popular among female teenagers.
Other monolingual DA corpora like Tunisiya (McNeil and Faiza, 2011), the Curras corpus
of Palestinian-Levantine (Jarrar et al., 2014), and those corpora presented in Al-Shargi et al.
(2016), focus on different dialects or are too small to be relevant to Egyptian-to-Levantine MT.

As for DA-to-DA data, Bouamor et al. (2014) present the first corpus with 2,000 7-way par-
allel sentences of Egyptian, Tunisian, three Levantine dialects (Syrian, Jordanian, Palestinian),
MSA, and English, all translated from Egyptian sentences harvested from the web. The authors
concede that many Levantine sentences seem to be influenced by the Egyptian, likely because
translators were primed with Egyptian expressions they might understand, but would not pro-
duce naturally. The same concern applies to the 6,400 sentence, 6-way parallel PADIC corpus
used in Meftouh et al. (2015), as all translations were derived from DA or MSA. When de-
veloping the 12,000 sentence multi-dialectal corpus used in our experiments, we avoided such
priming effects by asking translators to produce translations starting from English sentences
taken from the Basic Travel Expressions Corpus (BTEC) (Takezawa et al., 2002).

Other relevant resources include AVIA, a small but rich multi-dialect reference grammar
with contextual examples, and Tharwa (Diab et al., 2014), a 4-way English, MSA, Egyptian,
Levantine lexicon with rich linguistic annotation.

2.3 Pivot Machine Translation

Pivoting is an MT technique used to combat data sparsity when more source-to-pivot and pivot-
to-target data is available than source-to-target parallel data (Muraki, 1987; Hajic et al., 2004;
Wu and Wang, 2007; Habash and Hu, 2009). In this work, we use a specific form of pivoting:
phrase pivoting. This involves aligning source-to-pivot and pivot-to-target data, extracting pairs
of phrases into two phrase tables, then combining them into a single source-to-target phrase
table based on shared pivot phrases (Utiyama and Isahara, 2007).

Our work is similar to El Kholy et al. (2013), who use English to translate from Per-
sian to Arabic via phrase pivoting. They introduce connectivity strength constraints to weight
learned Persian-to-Arabic phrase-pairs in the table by considering how well each pair can be
aligned through an English pivot phrase (discussed further in Sections 4 and 5). In follow-
up work, El Kholy and Habash (2015) add morphological constraints for translating related,
morphologically rich languages Arabic and Hebrew, via morphologically-poor English. These
constraints help preserve fine grained morphological distinctions like gender agreement which
cannot otherwise be accurately translated via a morphologically poor pivot that does not make
such distinctions, i.e., English.

“4Pointers to the Linguistic Data Consortium’s BOLT resources can be found here: https://www.ldc.upenn.
edu/collaborations/current-projects/bolt.
Shttp://www.umventures.org/technologies/arabic-variant-identification-aid-avia



3 Data Preparation

All data used in our experiments comes from sources mentioned in Section 2.2. As displayed
in Table 1, we split our 12,000 sentence BTEC parallel corpus into training, tuning, dev, and
blind test sets, which are constant across all experiments. Also, in some experiments, we use
additional monolingual and pivot data from AOC and the BOLT corpus, respectively.

| Data Set | Dialect | Description | Size |

BTEC-train | Egy—Lev | Parallel 8,000
BTEC-tune | Egy-Lev | Parallel 500
BTEC-dev | Egy—Lev | Parallel 1,500
BTEC-test | Egy—Lev | Parallel 2,000

BOLT-egy |Egy-Eng Pivot 410,000
BOLT-lev | Eng—Lev Pivot 180,000
AOC-egy Egy |Monolingual | 9,000
AOC-lev Lev Monolingual | 5,000

Table 1: Data used in all experiments. Size reported in number of sentences.

Similar to MSA, DA is morphologically and syntactically rich, posing several challenges
for MT systems. To be able to leverage morpho-syntactic features, we ran our Egyptian and
Levantine data through MADAMIRA (Pasha et al., 2014), an Arabic morphological analyzer
and disambiguator trained for MSA (MADAMIRA-MSA) and Egyptian (MADAMIRA-EGY).
Unfortunately, the Levantine version of MADAMIRA is still under development (Eskander
etal.,2016), so we use MADAMIRA-EGY to process both our Egyptian and Levantine corpora.
Jarrar et al. (2014) and Khalifa et al. (2016) show that using MADAMIRA-EGY to process non-
Egyptian DA data yields better results than MADAMIRA-MSA. To minimize the analyzer’s
bias towards Egyptian when processing Levantine data, we do not allow it to make orthographic
changes. This limits the effects of misanalyzing many Levantine words, such as la4 \a hAIHD

‘this luck’, which can be incorrectly Epgyptianized as Lile HAIHD — the Egyptian future
particle + d H+ together with an MSA verb J'a:LiAZHDV ‘I perceive’.

A number of tokenization and segmentation schemes are available for Arabic (Habash,
2010). Some separate only punctuation and digits. Others, such as ATB and D3, separate dif-
ferent sets of clitics from the base word. Whereas D3 segments all clitics, ATB leaves attached
the definite article, J‘Al . The optimal segmentation for our task is D3 (Sadat and Habash, 2006),
as the aggressive tokenization mitigates for data sparsity. Typically, these tokenization schemes
involve orthographic rewrite rules to ensure that the base word matches its non-cliticized form
to minimize sparsity (El Kholy and Habash, 2012). Such rules depend on the morphological
template of the word and the clitics attached to it. For a word such as j’“‘:’ HyktbwhA ‘and
they will write it’, the basic D3 tokenization is H+ yktbwA +hA. The extra A is added to the
base word to minimize sparsity as this is how it would appear if no suffix had been appended.’

Since we do not have ideal tools for processing (tokenizing and detokenizing) Levantine,
we opt for a stricter surface-word-oriented segmentation that guarantees recovering the form by
simple concatenation when detokenizing. Thus, for la ﬁ"‘(’ HyktbwhA ‘and they will write
it’, the desired D3 segmentation is H+ yktbw +hA. This may increase data sparsity slightly,
but more importantly, as mentioned previously, this limits the extent to which words can be

6 Arabic transliteration is presented in the Habash-Soudi-Buckwalter scheme (Habash et al., 2007).
7In all of the work presented in this paper we apply s/ Alif/Ya normalization (El Kholy and Habash, 2012).



Required Data
Model BLEU | Out-of-vocabulary | Parallel | Monolingual | Pivot
NO-TRANSLATION | 6.48 N/A
DIRECT 15.44 4.6 X
SYNTHETIC 16.75 0.8 X X
PHRASE P1voT 6.77 14 X
DIR+PP 17.41 0.9 X X
SYNTHETIC-DIR+PP | 16.81 0.8 X X X

Table 2: Baseline BLEU scores given different requirements: parallel, monolingual, or pivot
data. Out-of-vocabulary rates are presented as percentages for each model.

misanalyzed or overly Egyptianized. To achieve this, we extend a DA morphological database
with suffix and prefix segmentations, adding a wrapper on top of MADAMIRA to generate the
proper segmentation for each analysis. The database extension is automatic and the segmenta-
tion is deterministic, following D3 segmentation rules. This allows us to (i) apply this extension
to other databases in other dialects that follow the structure of the MADAMIRA database, and
(ii) expand our application to dialects that do not have any available analyzers yet.

4 Baseline Models

We use the phrase-based statistical MT platform, Moses (Koehn et al., 2007) to build multiple
Egyptian-to-Levantine MT systems: one that only trains on parallel data, another that fabricates
pseudo-parallel training data from additional monolingual data, and a third model utilizing pivot
data through English. While neural MT has been successfully applied to MSA (Almabhairi et al.,
2016), we opt for statistical MT as data sparsity and other factors render neural techniques im-
possible for DA (Zhang et al., 2016). Luong and Manning (2015)’s English-to-Vietnamese
neural MT system, for instance, leverages 10 times more parallel data then we use in our ex-
periments, yet still fails to outperform a statistical baseline. Furthermore, their training and
testing data is from a single domain with standardized spelling, i.e., limited token:type ratio,
which Farajian et al. (2017) suggest should greatly facilitate neural MT performance. Given
our sparsity of DA data and lack of spelling conventions, we can neither rely on homogeneous
training/testing domains nor low token:type ratios and must resort to statistical MT.

We evaluate the output of our MT systems via BLEU scores (Papineni et al., 2002), com-
paring them to a single reference in detokenized space. NO-TRANSLATION, scoring 6.48, com-
pares the original, unchanged Egyptian input to the Levantine reference. The results as well as
data requirements are reported in Table 2.

4.1 The Direct Model

The most basic statistical system, the DIRECT model can be extended to any dialect pair with
parallel data. It is trained only on our BTEC parallel corpus, with some additional monolingual
data for language modeling. This model leverages a 2.4 million token 5-gram language model
trained using KenLM (Heafield, 2011), consisting of Levantine data from the AOC corpus,
BOLT, and BTEC.

Following El Kholy and Habash (2015), we perform word alignment using the grow-diag-
final algorithm (Och and Ney, 2003) and we restrict the maximum length of extracted phrases
to 8 tokens. Our D3 tokenization is slightly more aggressive than El Kholy and Habash (2015)
who use ATB, so we experimented with marginal increases in the maximum allowable phrase
length but found them to have no significant effects on performance.



As shown in Table 2, this basic model greatly outperforms the NO-TRANSLATION baseline
at 15.44 BLEU, but suffers from a high rate of out-of-vocabulary (OOV) words given that it is
only trained on a small amount of parallel data. Furthermore, the model seems to learn noisy
weights for many of the phrase pairs it extracts due to the infrequency with which they are
encountered during training.

4.2 The Synthetic Model

Inspired by Schwenk and Senellart (2009), we use additional monolingual data to build a SYN-
THETIC MT system. First, we use the DIRECT model to translate all of the BOLT Egyptian
data to Levantine. Then we build an inverse model identical to the DIRECT model, but from
Levantine to Egyptian, and use it to translate the BOLT Levantine data into Egyptian. Finally,
we learn a new phrase table from our newly generated parallel corpus consisting of the orig-
inal 8,000 training sentences, 410,000 BOLT Egyptian-to-generated-Levantine sentences, and
180,000 BOLT Levantine-to-generated-Egyptian sentences.

While Schwenk and Senellart (2009) implement this technique in a slightly different man-
ner for the purpose of domain adaptation, we use it to reduce noise in the phrase table. Due to
sparsity of parallel data, the DIRECT model is hard pressed to distinguish good low frequency
phrase pairs from bad ones. Adding synthetic data to the model enables it to learn better align-
ments for low frequency phrase pairs by getting exposure to a variety of different contexts in
which such phrases can occur. This system significantly improves over the DIRECT model,
scoring 16.75 BLEU, representing our best solution for DA-to-DA MT that does not require
pivot data.

4.3 The Phrase Pivot Model

Following El Kholy et al. (2013), we use the BOLT data to phrase pivot through English. Phrase
pivoting drastically increases vocabulary coverage; however, it also produces a phrase table with
many poorly connected phrase pairs as well as phrase pairs which erroneously translate morpho-
syntactic features that cannot be conveyed through morphologically-poor English. The PHRASE
P1vOoT model addresses the poor connectivity issue by adding El Kholy et al. (2013)’s connec-
tivity strength constraints. These identify how many Egyptian and Levantine tokens in a given
Egyptian-to-Levantine-via-English phrase pair can be aligned to each other via corresponding
alignments to the same English token.

For example, the noisy Egyptian-to-

Levantine phrase pair in Figure 1, would Egyptian: cAyz rwH bg({yn
receive a connectivity score of 0.75 from X
the Egyptian side because 3 of the 4 English: ~ wants to go now

X
s

alignments—those to ‘wants’, ‘to’, and
‘go’—connect through the English pivot
phrase to a Levantine token on the other side.
The connectivity score from the Levantine
side would be 0.6 because 3 of the 5 Levan-
tine alignments connect all the way through.
hlg does not count towards the 3 connections
because while it connects to the English to-
ken ‘now’, no Egyptian token connects to ‘now’ from the other side. This example also exhibits
the issue that will be addressed in Section 5, that morpho-syntactic properties are not accurately
conveyed through morphologically deprived English, as ¢Ayz and bd connect through ‘want’,
though ¢Ayz implies a masculine subject whereas the suffix of bd, hA, entails that the subject of
the Levantine sentence is in fact third-person feminine.

. I
Levantine: bd hA trwH hig

Figure 1: Identifying the connections between
an Egyptian phrase and Levantine phrase which
were both independently (and noisily) mapped
to the same English phrase during pivoting.



This PHRASE PIVOT model can be extended to any DA pair with pivot data, but only
marginally outperforms the NO-TRANSLATION baseline at 6.77 BLEU. However, used in con-
junction with the DIRECT model, the Direct + Phrase Pivot (DIR+PP) model increases OOV
coverage, boosting performance to 17.41 BLEU, almost 2 full BLEU points over the DIRECT
baseline. We also re-ran the SYNTHETIC model using DIR+PP to fabricate parallel data instead
of DIRECT, however, this did not improve performance. It is possible that the types of DIRECT
model errors which are corrected by DIR+PP versus those corrected by SYNTHETIC are similar.
Thus, when training on fabricated parallel data, the SYNTHETIC-DIR+PP model may reinforce
its own errors more than learn to fix them.

5 Leveraging Morphology and Syntax

The best baseline system, DIR+PP still fails to adequately handle Arabic’s rich morphology and
syntax, as illustrated by Figure 2, where part-of-speech (POS) is not preserved in the output.
A minimally different correct version of the example in Figure 2 would simply replace verbal
third-person singular C.J.u byftH ‘he opens’, with the nominal form C.ie 3y ftH “in opening’.

Source: gTJL.J‘[[C:é sl Il Shs Gl
AnA <ndy mskih  [[fy ftH]] AlbAb
I to-me problem [[in opening.N]] the-door
Output: ] [[pz]] PEliw s Ul
AnA sndy msklih  [[byftH]] AlbAb

1 to-me problem [[with-opens.3MS]] the-door
Reference: I'm having trouble opening the door

Figure 2: Example DIR+PP error where the output does not preserve the POS of the source.

Because Arabic verbs convey person in much finer granularity than do English verbs,
which only inflect for third-person singular forms in present tense, many Arabic verb inflections
in the source-to-pivot and pivot-to-target phrase tables will be aligned to the same morpholog-
ically deprived English verb, e.g., ‘opening’. Thus, when the phrase tables are combined via
shared English phrases, any given inflected Egyptian verb can be mapped to a large number
of Levantine inflections, which, mostly, will not share the same morpho-syntactic properties.
In this case, because ‘opening’, like many ‘ing’-suffixed forms in English, can be nominal or
verbal, it is not just inflectional morphology that is confused but derivational morphology, as
the POS is misinterpreted.

5.1 Addressing Resource Limitations

El Kholy and Habash (2015) use AMEANA (El Kholy and Habash, 2011), an automatic error
analysis tool, to determine that definiteness, gender, and number are the features that most fre-
quently contribute to such errors in Hebrew-to-MSA MT. In this work, we were not able to use
AMEANA, as it relies on accurate morphological analyses that we cannot produce automati-
cally for Levantine. Furthermore, even if we knew what were the most problematic features for
translating Egyptian to Levantine, we might not be able to leverage them, as there is non-trivial
noise and Egyptian bias in how the analyses were generated (Section 3).

Our approach focuses instead on identifying features that: (i) MADAMIRA-EGY can rec-
ognize relatively accurately (ii) tend to be consistently translated from Egyptian to Levantine.
For instance, second-person and third-person verbal forms are frequently orthographically am-
biguous in Arabic, making person challenging for our analyzer to correctly identify. Thus,



adding a constraint to the model promoting consistent translation of the person feature value
would be useless because we are not likely to know the correct property of person in the first
place. Furthermore, if the possible values of a given feature can be translated freely, modeling
that feature will be similarly useless. This is often the case with tense, as ¢ls .30 biwfk ‘see you’

in Egyptian could conceivably be translated as «lsq4.s &) rH Swfk in Levantine, changing the

value from progressive (realized by the cliticized particle o b) to future tense (realized by the
particle T rH).

Without gold, morphologically annotated data in Levantine, we cannot independently mea-
sure either our ability to identify morpho-syntactic feature values correctly, or the consistency
with which they should be translated. However, we can approximate both jointly. Assuming
that Egyptian feature values should correspond to the same feature values on the Levantine
side, we measure, for each morpho-syntactic feature, how frequently the realized property on
the Egyptian side is aligned to the same property on the Levantine side.

As shown in Table 3, definiteness, gender, number, and POS are the only features which
map consistently across aligned tokens in more than 50% of their occurrences throughout the
BTEC training set. This suggests that they both can be recognized accurately and are con-
sistently preserved in human translation. Even so, the fact that none of these features map
consistently over 80% of the time, suggests that modeling such features will be noisy.

Definiteness | Number | Gender | POS | Aspect | Person
75 75 62 56 32 29

Table 3: Percentage rates over all training set token alignments at which the feature’s values
were preserved from Egyptian to Levantine.

5.2 Computing Constraint Scores

Similar to El Kholy and Habash (2015), we design morpho-syntactic constraints by calculat-
ing probability distributions from Egyptian to Levantine and vice versa. These reflect how
likely each morpho-syntactic property set on one side is to be aligned to each morpho-syntactic
property set on the other, based on how often such alignments occured in the training data.
Properties sets are defined as the conjunction of values for all morpho-syntactic features under
consideration, which for us, include the four most "consistent” features as identified in Table
3: definiteness, number, gender—which were used by El Kholy and Habash (2015)—and also
POS (thus, masculine-singular-verb and definite-feminine-noun are property sets). Unaligned
tokens are considered to be aligned to a null token on the opposite side, and thus are mapped
to an empty property set. We use these probability distributions to add two constraint scores to
every phrase pair in the phrase pivot table, one calculated from Egyptian to Levantine and the
other, Levantine to Egyptian, as defined in Equations 1 and 2.

1
We= Z P(MLE()|MLE(j)) (1)
v(i,j)€a
1 . .
Wi=5 > P(MLEG)MLEW) )
v (i,j)€b



We calculate W by summing over every alignment a from source token ¢ to target token
7 (if < is unaligned, j is the null token), the probability of ¢’s property set given j’s. While
El Kholy and Habash (2015) normalize this sum by the quantity of source tokens, we normalize
by the total number of alignments A. Otherwise, many-to-one and one-to-many alignments
would bias the scores and enable some to exceed one, making them impossible to interpret as
probabilities. The property sets of ¢ and j are determined from the set of all possible property
sets for that type (defined as the list of all unique analyses it received over every occurrence in
BOLT, AOC, and the BTEC training data) via maximum likelihood estimation, M LE, so as to
maximize the likelihood of the source property set given the target property set.

This entails that individual tokens’ property sets can be analyzed differenlty from the
source side than from the target side. Also, sequences of M LE property sets over multiple
tokens on a single side can be syntactically infeasible, e.g., containing 5 consecutive verbs.
Thus, we experimented with additional constraints, requiring (i) aligned M LE property sets to
have been aligned at least once in the training set (ii) syntactic feasibility on source and target
sides independently (iii) alignment of the sequence of property sets on the source side to that
on the target side to have appeared at least once in the training set. However, none of these
experiments boosted performance, suggesting that M LFE inconsistency is not a problematic
issue.

W is calculated equivalently to W from the target side. Adding these constraint weights
to each phrase pair in the phrase pivot table, we re-tune the DIR+PP system, re-test, and obtain
a statistically significant improvement with a score of 18.03 BLEU on the development set.

We then evaluate the DIRECT, DIR+PP, and Direct + Phrase Pivot with Morpho-syntactic
Features (DIR+PP+MORPH) systems on the 2,000 sentence blind test set from our BTEC cor-
pus. The results in Table 4 confirm the utility of our added constraints, as each successive model
significantly improves over the last, as in the development set.

Model Dev | Dev OOV | Test | Test OOV
NO-TRANSLATION | 6.48 N/A 6.45 N/A
DIRECT 15.44 4.6 14.61 54
DIR+PP 17.41 0.9 16.69 1.0
DIR+PP+MORPH | 18.03 0.9 17.48 1.0

Table 4: Comparing BLEU scores of systems with and without morpho-syntactic features on
development and blind test sets. Out-of-vocabulary rates are reported as percentages.

6 Error Analysis

We analyized the output of the DIR+PP and DIR+PP+MORPH models on 100 development set
sentences to investigate the effects of morpho-syntactic features and to identify issues for future
work. Table 5 reveals a stark contrast—about a 30% gap in both models—between the quantity
of output tokens matching a reference token letter-for-letter (row 3), and the quantity of output
tokens manually judged to be acceptable (row 2). Approximately 10% of that 30% gap is due
to lack of spelling standards in DA (row 4). Habash et al. (2012a) developed a Conventional
Orthography for Dialectal Arabic (CODA) to standardize spelling while preprocessing DA and
a prototype system can CODAfy Egyptian (Eskander et al., 2013), though no such system is yet
available for Levantine. Once developed, we expect such a system to improve MT quality not
only by imposing consistent output, but also by reducing sparsity in all translation and language
models during training.

The remaining 90% of the 30% gap between exactly matched tokens and tokens judged



to be correct can be approximately split into thirds. One third cannot be directly linked to any
reference token (row 7), e.g., tokens in paraphrasal or idiomatic constructions. Another third is
tokens which can be linked to a reference token, but take a different root (row 5). The final third
are inflectional or derivational variants of the corresponding reference token (row 6). The fact
that so many inflectional/derivational variants are judged correct demonstrates that morpho-
syntactic modeling is necessarily noisy as property sets are frequently not preserved, even in
acceptable translations. On the other hand, the success of DIR+PP+MORPH suggests that some
features’ properties tend to be preserved through translation or at least altered predictably, as

otherwise, the system would not benefit from modeling them.

Dir+pp | DIR+PP
MORPH
1 | Words 665 670
2 |Words Judged Correct 569 (85.6) | 594 (88.7)
3 Exact Match| 377 (56.7) | 382 (57.0)
4 CODA Variant| 23 (3.5) 25 @3.7)
5 Different Root| 47 (7.1) 51 (7.6)
6 Different Properties| 61 (9.2) 65 (9.8)
7 Otherwise Different| 61 (9.2) 71 (10.7)
8 | Words Judged Incorrect 96 (14.4) | 76 (11.3)
9 | Morpho-syntactic Properties| 49 (7.4) 41 (6.1)
10 Other Problems| 47 (7.1) 35(5.2)
11 Properties: Modeled| 33 (5.0) 26 (3.9)
12 Not Modeled| 16 (2.4) 15(2.2)
13| Other: Wrong Word Sense| 18 (2.7) 17 (2.5)
14 Apparent Phrasal Issue| 13 (2.0) 7 (1.0)
15 Unclear Reason| 13 (2.0) 7 (1.0)
16 OooVv| 2(0.3) 3(0.4)
17 Copies Egyptian| 1 (0.2) 1(0.1)
18| Word Error Reduction N/A (20.2)
19| Sentences 100 100
20 Correct Sentences 48 55
21 Sentence Error Reduction N/A (13.5)

Table 5: Comprehensive manual error analysis of 100 sentences from the development set.
Values within parentheses are percentages.

6.1 Direct Effects of Added Features

The second major insight of the error analysis is that the error reduction from adding morpho-
syntactic constraints is far more significant (20.2%, row 18), than the improvement registered
by the automatic BLEU scores. Example sentences illustrating some of these improvements
are contained in Figure 3. For 7.4% of the tokens DIR+PP outputs, its only mistake is mis-
representing one or more morpho-syntactic property (row 9). Comparing that to 6.1% for
DIR+PP+MORPH (row 9), the new model makes a 17% error reduction in the area it is de-
signed to improve. Furthermore, essentially all of this improvement takes place in sentences
where DIR+PP+MORPH corrects a mistake involving a feature we model: definiteness, gender,
number, or POS. For example, the definite article is correctly added to the word &a.24 1 AIHgyqh
‘the truth’ in Figure 3a.



ENGLISH: Actually, inside it [...] Do you mind if I take it out?

REFERENCE: Ty 1! C'La EIRVEY N W Ty Gadl
bAIHgyqh JAl bAlbw [...] sndk mAns  AzZA Sltw?
with-the-truth exists in-heart-its [...] to-you problem if take-1SPast-it

(a) DIR+PP: 0 gulls 13 C'La EURVEY PO W]V R eI
Hgqyqh* JAl bAIDA [...] sndk mAns  AOA Tlgw?*
truth*® exists in-heart-its [...] to-you problem if remove.3SPast-it*
DIrR+PP+MORPH: ol 13 C'Lo s [.] sl (5 9a (daad)
AlHqyqh hwy  bqlbw [...] sndk mAng AJA sitw?
the-truth it in-heart-its [...] to-you problem if take.1SPast-it?
ENGLISH: I’ll bring one right away
REFERENCE: Ma soly Cum &
rH Jjyb wAHd hlA
will bring.1S one now
DIR+PP: S sl ¥id L
(b) ly * 2\
bAljybh* wAHd  hlg
with-the-pocket* one now
DIR+PP+MORPH: Sl aaly Cus o
rH Jjyb wAHd hlg
will bring.1S one now
ENGLISH: What kind of fruit do you have?
REFERENCE: fdus u(\}’ ¢y sl

Ay nws  fwAky <ndk?
which kind fruit at-you
(c) DIR+PP: Hod Wl o g 9 gl s
sndk Ay nws  mn AlfAkhh  §w?*
at-you which kind from the-fruit what*
DIR+PP+MORPH: T3 & uf‘ RS
sndk Ay nws  mn AlfAkhh?
at-you which kind from the-fruit

Figure 3: Example translation errors (marked with *) corrected by adding morpho-syntactic
constraints to the model.

6.2 Indirect Effects of Added Features

Surprisingly, most of the overall error reduction actually comes from mistakes other than mis-
representation of morpho-syntactic properties, as such mistakes decrease by 26%, from 7.1%
to 5.2% (row 10). The morpho-syntactic constraints seem to teach the model about syntax at
the phrase level, as sentences like Figure 3b are corrected, which were originally over-chunked
into small phrases by DIR+PP. 4.4 bAljybh ‘with the pocket’ is likely a misanalysis of the

source word > hAjyb ‘T'll get’ translated as a single-word phrase, as it would have made
for an infrequent or non-existent bigram or trigram when combined with the following words
in the output. The DIR+PP model likely had access to longer phrase pairs such as »\j NVER T

hAjyb wAHd ‘T’1l get one’ mapping to "‘"ﬁ e rH jyb wAHd—the corresponding ref-

erence phrase—but likely did not select it because longer phrases are inherently less frequent,



i.e., noisier to model.

Morpho-syntactic constraints enable DIR+PP+MORPH to increasingly select longer, in-
frequent phrase pairs by distinguishing those that are morpho-syntactically feasible from com-
peting shorter alternatives. Translating larger phrasal chunks leads to more fluent output by
reducing opportunities to incorrectly chunk phrase boundaries. This is why much of the er-
ror reduction does not appear to be, superficially at least, related to morpho-syntactic features
targeted by DIR+PP+MORPH.

Figure 3c exhibits another benefit of morpho-syntactic features, as DIR+PP+MORPH often
corrects the insertion of gratuitous words, here, o Sw ‘what’. Such features teach the model
that certain POS’s are less likely to align to the null token, even if the language model favors
the sequence with the gratuitous token monolingually.

7 Conclusion and Future Work

In this work, we presented the second ever evaluated Arabic DA-to-DA MT effort. The sub-
ject has not previously received serious attention due to lack of naturally occurring parallel data,
though DA is widely spoken and dialects are frequently mutually unintelligible, exhibiting com-
parable linguistic variation to the Romance languages. Our results suggest that modeling mor-
phology and syntax can significantly improve DA-to-DA MT despite data sparsity. However,
optimizing models under such circumstances requires careful consideration of the linguistic
differences between dialects and careful tailoring and implementation of all available data and
resources.

Given that many DA pairs may not have pivot data available, the most pressing future work
is to develop a dialect-agnostic tokenizer and analyzer which does not suffer from the Egyptian
bias that ours does. This will reduce data sparsity regardless of the nature of the low-resourced
MT settings for any DA pair, and it will enable better morpho-syntactic modeling.

Additionally, improving on the dialect identification work of Diab et al. (2010), Zaidan and
Callison-Burch (2011), and Elfardy and Diab (2013) will enable us to collect more monolingual
data. This data is not only useful for language modeling but can also be mined for comparable
sentences to augment the parallel training set. The process typically involves using metadata
(Resnik and Smith, 2003) and seed data (Munteanu and Marcu, 2005) to identify pairs of re-
lated sentences or phrases in the source and target languages (Cettolo et al., 2010; Max et al.,
2012). These are then iteratively classified via expectation maximization with phrases identi-
fied as parallel being added to the seed data (Dong et al., 2015). Models trained thusly produce
noisy phrase pairs, often imperfectly modeling morpho-syntactic property sets. Thus, the same
morpho-syntactic constraints that improved DIR+PP+MORPH can be adapted to improve MT
via comparable corpora.
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